Archive for septiembre, 2010


que es ftp?

¿Qué es FTP?

El acrónimo de FTP es protocolo de transferencia de ficheros (File Transfer Protocol) y es un software cliente/servidor que permite a usuarios transferir ficheros entre ordenadores en una red TCP/IP.

FTP tiene sus orígenes en 1971, y aunque ha evolucionado con el paso de los años, es uno de los protocolos más antiguos que todavía están en uso. Hoy en día se usa principalmente en redes corporativas y la red más grande que existe, Internet.

El funcionamiento es sencillo. Una persona desde su ordenador invoca un programa cliente FTP para conectar con otro ordenador, que a su vez tiene instalado el programa servidor FTP. Una vez establecida la conexión y debidamente autenticado el usuario con su contraseña, se pueden empezar a intercambiar archivos de todo tipo.

Aunque no estés familiarizado o no conoces FTP, las opciones de que lo hayas usado alguna vez son bastante grandes. Muchos de los enlaces de descarga que usas en Internet, son URLs que apuntan a un ordenador que está actuando como un servidor FTP: tu navegador automáticamente hace la conexión y descarga correspondiente.

¿Por qué se sigue usando FTP?

Muy simple, el protocolo FTP es el sistema de transferir archivos más estable y fiable que hay en Internet. Esto significa que la descarga y subida de archivos que hagas tendrán más opciones de completarse si errores de transferencia, y quedarán intactos después del envío.

// //

Existen unas normas o estándares que permiten a FTP funcionar en casi cualquier medio. Estas especificaciones son las que hacen que plataformas independientes dentro de Internet puedan comunicarse entre si.

FTP usa menos cabecera que otros mecanismos de transferir archivos, enviando menos paquetes en un sentido y en otro. La razón principal de esto es que FTP puede descargar ficheros en modo binario. Cuando descargas un fichero usando HTTP (Hyper Text Transfer Protocol), o envías/recibes un archivo añadido a un email, los datos primero se codifican en MIME (Multipurpose Internet Mail Extensions). Básicamente, esto significa que tu fichero es codificado como texto en la transmisión, y vuelta a convertir en binario al final de la transferencia. Esta codificación aumenta considerablemente el tamaño de la cabecera.

El propio protocolo TCP/IP, provee de un sistema de control y corrección de paquetes al ser recibidos en el destino. Si un paquete en la secuencia de envío se pierde, el ordenador que recibe los datos hace una petición para el reenvió de datos. Esta es la razón de porque TCP/IP es tan fiable. Esto es una ventaja porque FTP funciona sobre el protocolo TCP/IP.

Las más modernas versiones de FTP, permiten resumir las descargas que han quedado a medias. En el lado servidor, se incluyen unos marcadores que el cliente puede interpretar para saber desde donde tiene que seguir descargando el archivo. De este modo, en caso de fallo, no tenemos que volver a bajarnos un fichero entero otra vez.

¿Por qué necesitamos un software de cliente FTP?

Un buen software cliente FTP te da más control sobre lo que haces. Los navegadores, aunque sirven para usar FTP, no son demasiado adecuados como clientes, y sus mecanismos para resumir descargas dejan algo que desear, si es que puede hacerlo. En los navegadores se suelen dar más errores. Por propia experiencia, no aconsejo utilizar navegadores para bajarse cosas de servidores FTP, sobre todo si son archivos grandes. Existen buenos programas FTP que evitarán problemas.

¿Qué software FTP usar?

Esto es una elección personal y no quiero influenciar a nadie para que utilice un determinado software FTP. Existen programas gratuitos y otros de pago. La mayoría son buenos y valdrán para lo que quieres hacer. Personalmente, yo utilizo cuteFTP hace años y no quiero utilizar otros. CuteFTP es sencillo de usar, cómodo y nunca da problemas. No es gratuito pero merece la pena lo que vale.

Busca el programa FTP que mejor se ajuste a ti. Prueba varios y luego decide. Y recuerda… mientras lo haces, diviértete.

Descargar PDF   Qué es la Web 2

 

¿Qué es la Web 2.0?

La Web 2.0 es la representación de la evolución de las aplicaciones tradicionales hacia aplicaciones web enfocadas al usuario final. El Web 2.0 es una actitud y no precisamente una tecnología.

La Web 2.0 es la transición que se ha dado de aplicaciones tradicionales hacia aplicaciones que funcionan a través del web enfocadas al usuario final. Se trata de aplicaciones que generen colaboración y de servicios que reemplacen las aplicaciones de escritorio.

Es una etapa que ha definido nuevos proyectos en Internet y está preocupándose por brindar mejores soluciones para el usuario final. Muchos aseguran que hemos reinventado lo que era el Internet, otros hablan de burbujas e inversiones, pero la realidad es que la evolución natural del medio realmente ha propuesto cosas más interesantes como lo analizamos diariamente en las notas de Actualidad.

Y es que cuando el web inició, nos encontrábamos en un entorno estático, con páginas en HTML que sufrían pocas actualizaciones y no tenían interacción con el usuario.

Pero para entender de donde viene el término de Web 2.0 tenemos que remontarnos al momento en que Dale Dougherty de O’Reilly Media utilizó este término en una conferencia en la que compartió una lluvia de ideas junto a Craig Cline de MediaLive. En dicho evento se hablaba del renacimiento y evolución de la web.

Constantemente estaban surgiendo nuevas aplicaciones y sitios con sorprendentes funcionalidades. Y así se dio la pauta para la Web 2.0 conference que arranca en el 2004 y hoy en día se realiza anualmente en San Francisco, con eventos adicionales utilizando la marca en otros países.

En la charla inicial del Web Conference se habló de los principios que tenían las aplicaciones Web 2.0:

  • La web es la plataforma
  • La información es lo que mueve al Internet
  • Efectos de la red movidos por una arquitectura de participación.
  • La innovación surge de características distribuidas por desarrolladores independientes.
  • El fin del círculo de adopción de software pues tenemos servicios en beta perpetuo

 

Descargar en PDF  HTTP

HTTP

El término http quiere decir “Hypertext Transfer Protocol”, en español “Protocolo de Transferencia de Hipertexto”. Para los que no tienen experiencia en términos computacionales, esto puede parecer complicado, pero en realidad no lo es si examinamos este asunto por partes. Un protocolo es un conjunto de reglas a seguir, o lenguaje en común, y en este caso es conjunto de reglas a seguir son para publicar páginas web o HTML. El hipertexto se refiere a texto común con algunos atributos propios de las páginas en Internet, como lo son los enlaces. Por lo tanto http es un conjunto de reglas acordadas para transferir texto con atributos propios de la Internet. Bastante sencillo.

Este protocolo opera a través de solicitudes y respuestas, entre un “cliente” y un “servidor”. El cliente para los usuarios es el navegador web, usado para navegar por la red como el Internet Explorer, y el servidor es aquel en donde se almacenan las páginas de Internet (aquellos que publican información en la Internet contratan estos servidores para almacenar su información, de tal manera que los usuarios o visitas puedan acceder a la misma desde sus computadores de manera remota).

Para saber que información esta accesando nuestro navegador en un momento dado, basta simplemente con observar la “barra de navegación”, en la parte de arriba de nuestra pantalla, justo después de las herramientas del navegador. La información que sigue a “http” se denomina el URI (Uniform Resouce Identifier), más conocido como URL, lo que no es más que la dirección que estamos visitando. Generalmente estas direcciones comienzan con www, que quiere decir “World Wide Web”, pero existen muchas otras extensiones posibles.

Ahora que ya sabemos esto, si somos observadores nos preguntaremos porqué cuando visitamos un banco o realizamos una compra por Internet este encabezado de direcciones cambia a “htpps”, y generalmente junto con esto un mensaje nos alerta de que estamos accediendo a un sitio o sección seguros. La respuesta es que este encabezado para las direcciones https le indica a nuestro navegador que emplee encriptación adicional para proteger la información que está siendo transferida, lo que es especialmente indicado para las transacciones en línea.

Saber lo que es http y toda la información que sigue a este atributo cuando visitamos páginas web no solo es un dato curioso, sino que además nos ayuda a proteger nuestra privacidad. Cuando realicemos compras en línea o transacciones en donde se involucre nuestra información personal, siempre debemos mirar nuestra barra de direcciones y buscar el https junto con el nombre correcto del sitio o institución que visitamos. Es un crimen bastante común el intentar imitar páginas de bancos y similares para que las personas ingresen su información personal, pero con algo de conocimiento básico esto es fácil de evitar.

Descargar en PDF  Hipervínculo

Hipervínculo

 

Un hipervinculo es un elemento de un documento electrónico que hace referencia a otro recurso, por ejemplo, otro documento o un punto específico del mismo o de otro Documento. Combinado con una red de datos y un protocolo de acceso, un hiperenlace permite acceder al recurso referenciado en diferentes formas, como visitarlo con un agente de navegación, mostrarlo como parte del documento referenciador o guardarlo localmente.

Los hiperenlaces son parte fundamental de la arquitectura de la World Wide Web, pero el concepto no se limita al HTML o a la Web. Casi cualquier medio electrónico puede emplear alguna forma de hiperenlace.

 

Partes del hipervínculo

Un enlace cuenta con dos extremos, denominados anclas, y una dirección. El enlace comienza en el ancla origen y apunta al ancla destino. Sin embargo, el término enlace a menudo se utiliza para el ancla origen, mientras que al ancla destino se denomina enlace de destino (link target).

El enlace de destino más común es un URL, utilizado en la World Wide Web. Puede invocar a un documento, por ejemplo una página web, a otro recurso, o a una posición determinada en una página web. Este último se consigue asignando a un elemento HTML el atributo “name” o “id” en esa posición del documento HTML. El URL de la posición es el URL de la página con “#atributo name” añadido.

Cuando los enlaces de destino invocan, además de texto, elementos multimedia ( audio, video, imágenes, etc. ), puede decirse que estamos navegando en un espacio hipermedia, un ámbito de interacción humana que intensifica la densidad de los mensajes, dentro de la gama exhaustiva de supuestos funcionales que aporta la Red, como por ejemplo: comunicación en tiempo real y en tiempo diferido, comunicación de una persona a una persona, de varias a una, de una a varias, de varias a varias, etc.

descargar PDF www

¿Qué es el WWW?

Es un conjunto de servicios basados en hipermedios, ofrecidos en todo el mundo a través de Internet, se lo llama WWW (World Wide Web – Telaraña de Cobertura Mundial). No existe un centro que administre esta red de información, sino más bien está constituida por muchos servicios distintos que se conectan entre sí a través de referencias en los distintos documentos, por ejemplo, un documento contenido en un computador en Canadá, puede tener referencias a otro documento en Japón, o a un archivo en Inglaterra, o a una imagen en Suecia.
Al hablar de hipermedios nos referimos a información que puede presentarse utilizando distintos medios, como documentación ejecutable, de texto, gráficos, audio, vídeo, animación o imagen.
El WWW fue desarrollado inicialmente en el CERN (el Laboratorio Europeo de Física de Partículas) pero por su extrema flexibilidad ha cambiado mucho últimamente.
Cuando una persona ingresa al WWW lo hace mediante un programa “examinador” en general llamado Browser, y a partir de ése momento él esta en el Web

Descargar en PDF    tcp ip definicion

DEFINICION TCP / IP

Se han desarrollado diferentes familias de protocolos para comunicación por red de datos para los sistemas UNIX. El más ampliamente utilizado es el InternetProtocol Suite, comúnmente conocido como TCP / IP.

Es un protocolo DARPA que proporciona transmisión fiable de paquetes de datos sobre redes. El nombre TCP / IP Proviene de dos protocolos importantes de la familia, el Transmission Contorl Protocol (TCP) y el Internet Protocol (IP). Todos juntos llegan a ser más de 100 protocolos diferentes definidos en este conjunto.

El TCP / IP es la base del Internet que sirve para enlazar computadorasque utilizan diferentes sistemas operativos, incluyendo PC, minicomputadoras y computadoras centrales sobre redes de área local y área extensa. TCP / IP fue desarrollado y demostrado por primera vez en 1972 por el departamento de defensa de los Estados Unidos, ejecutándolo en el ARPANET una red de área extensa del departamento de defensa.

descargar en pdf    Arpanet

ARPANET

El gobierno de los Estados Unidos quería encontrar una manera de acceder y distribuir la información en caso de una catástrofe, como por ejemplo un ataque nuclear. Si una bomba diera en un importante centro de ordenadores, las transferencias de información se pararían de inmediato. Sin embargo, si se pudieran unir varias redes diferentes y separadas, otras partes del sistema seguirían funcionando incluso si algunos enlaces fueran destruidos.

Este proyecto de ARPA gradualmente fue evolucionando de la teoría a proposiciones reales de construir esas redes. En 1968, ARPA envío una petición a varias instituciones pidiendo ofertas para crear la primera red de área extensa (WAN). La firma BBN ganó la oferta para diseñar 4 máquinas procesadoras de mensajes que crearían comunicaciones abiertas entre los cuatro dispositivos diferentes, y en cuatro sistemas operativos.

PREDECESORES:

Antes de ARPANET, muchos sistemas de ordenadores consistían en una masiva cantidad de computadoras, algunas veces del tamaño de una habitación entera, las cuales usaban terminales completamente cableados. Un terminal era de alguna manera un interfaz de usuario, que a menudo consistía en un teclado o lector de tarjeta. Muchos usuarios podían acceder al ordenador simultáneamente. Las computadoras en redes más antiguas, requerían una conexión directa entre dos ordenadores, significando que solo había una vía de comunicación para poder transferir los datos. Las conexiones directas limitaban el tamaño de las redes de ordenadores, las cuales se empezaron a llamar LANs.

Descargar PDF          La historia de Internet 

La historia de Internet

Internet surgió de un proyecto desarrollado en Estados Unidos para apoyar a sus fuerzas militares. Luego de su creación fue utilizado por el gobierno, universidades y otros centros académicos.

Internet ha supuesto una revolución sin precedentes en el mundo de la informática y de las comunicaciones. Los inventos del telégrafo, teléfono, radio y ordenador sentaron las bases para esta integración de capacidades nunca antes vivida. Internet es a la vez una oportunidad de difusión mundial, un mecanismo de propagación de la información y un medio de colaboración e interacción entre los individuos y sus ordenadores independientemente de su localización geográfica. 

Orígenes de Internet

   

La primera descripción documentada acerca de las interacciones sociales que podrían ser propiciadas a través del networking (trabajo en red) está contenida en una serie de memorándums escritos por J.C.R. Licklider, del Massachusetts Institute of Technology, en Agosto de 1962, en los cuales Licklider discute sobre su concepto de Galactic Network (Red Galáctica).

El concibió una red interconectada globalmente a través de la que cada uno pudiera acceder desde cualquier lugar a datos y programas. En esencia, el concepto era muy parecido a la Internet actual. Licklider fue el principal responsable del programa de investigación en ordenadores de la DARPA desde Octubre de 1962. Mientras trabajó en DARPA convenció a sus sucesores Ivan Sutherland, Bob Taylor, y el investigador del MIT Lawrence G. Roberts de la importancia del concepto de trabajo en red. 

En Julio de 1961 Leonard Kleinrock publicó desde el MIT el primer documento sobre la teoría de conmutación de paquetes. Kleinrock convenció a Roberts de la factibilidad teórica de las comunicaciones vía paquetes en lugar de circuitos, lo cual resultó ser un gran avance en el camino hacia el trabajo informático en red. El otro paso fundamental fue hacer dialogar a los ordenadores entre sí.

Para explorar este terreno, en 1965, Roberts conectó un ordenador TX2 en Massachusetts con un Q-32 en California a través de una línea telefónica conmutada de baja velocidad, creando así la primera (aunque reducida) red de ordenadores de área amplia jamás construida. El resultado del experimento fue la constatación de que los ordenadores de tiempo compartido podían trabajar juntos correctamente, ejecutando programas y recuperando datos a discreción en la máquina remota, pero que el sistema telefónico de conmutación de circuitos era totalmente inadecuado para esta labor. La convicción de Kleinrock acerca de la necesidad de la conmutación de paquetes quedó pues confirmada. 

A finales de 1966 Roberts se trasladó a la DARPA a desarrollar el concepto de red de ordenadores y rápidamente confeccionó su plan para ARPANET, publicándolo en 1967. En la conferencia en la que presentó el documento se exponía también un trabajo sobre el concepto de red de paquetes a cargo de Donald Davies y Roger Scantlebury del NPL. Scantlebury le habló a Roberts sobre su trabajo en el NPL así como sobre el de Paul Baran y otros en RAND. El grupo RAND había escrito un documento sobre redes de conmutación de paquetes para comunicación vocal segura en el ámbito militar, en 1964.

Ocurrió que los trabajos del MIT (1961-67), RAND (1962-65) y NPL (1964-67) habían discurrido en paralelo sin que los investigadores hubieran conocido el trabajo de los demás. La palabra packet (paquete) fue adoptada a partir del trabajo del NPL y la velocidad de la línea propuesta para ser usada en el diseño de ARPANET fue aumentada desde 2,4 Kbps hasta 50 Kbps (5). 

En Agosto de 1968, después de que Roberts y la comunidad de la DARPA hubieran refinado la estructura global y las especificaciones de ARPANET, DARPA lanzó un RFQ para el desarrollo de uno de sus componentes clave: los conmutadores de paquetes llamados interface message processors (IMPs, procesadores de mensajes de interfaz).

El RFQ fue ganado en Diciembre de 1968 por un grupo encabezado por Frank Heart, de Bolt Beranek y Newman (BBN). Así como el equipo de BBN trabajó en IMPs con Bob Kahn tomando un papel principal en el diseño de la arquitectura de la ARPANET global, la topología de red y el aspecto económico fueron diseñados y optimizados por Roberts trabajando con Howard Frank y su equipo en la Network Analysis Corporation, y el sistema de medida de la red fue preparado por el equipo de Kleinrock de la Universidad de California, en Los Angeles (6). 

A causa del temprano desarrollo de la teoría de conmutación de paquetes de Kleinrock y su énfasis en el análisis, diseño y medición, su Network Measurement Center (Centro de Medidas de Red) en la UCLA fue seleccionado para ser el primer nodo de ARPANET. Todo ello ocurrió en Septiembre de 1969, cuando BBN instaló el primer IMP en la UCLA y quedó conectado el primer ordenador host .

El proyecto de Doug Engelbart denominado Augmentation of Human Intelect (Aumento del Intelecto Humano) que incluía NLS, un primitivo sistema hipertexto en el Instituto de Investigación de Standford (SRI) proporcionó un segundo nodo. El SRI patrocinó el Network Information Center , liderado por Elizabeth (Jake) Feinler, que desarrolló funciones tales como mantener tablas de nombres de host para la traducción de direcciones así como un directorio de RFCs ( Request For Comments ).

Un mes más tarde, cuando el SRI fue conectado a ARPANET, el primer mensaje de host a host fue enviado desde el laboratorio de Leinrock al SRI. Se añadieron dos nodos en la Universidad de California, Santa Bárbara, y en la Universidad de Utah. Estos dos últimos nodos incorporaron proyectos de visualización de aplicaciones, con Glen Culler y Burton Fried en la UCSB investigando métodos para mostrar funciones matemáticas mediante el uso de “storage displays” ( N. del T. : mecanismos que incorporan buffers de monitorización distribuidos en red para facilitar el refresco de la visualización) para tratar con el problema de refrescar sobre la red, y Robert Taylor y Ivan Sutherland en Utah investigando métodos de representación en 3-D a través de la red.

Así, a finales de 1969, cuatro ordenadores host fueron conectados cojuntamente a la ARPANET inicial y se hizo realidad una embrionaria Internet. Incluso en esta primitiva etapa, hay que reseñar que la investigación incorporó tanto el trabajo mediante la red ya existente como la mejora de la utilización de dicha red. Esta tradición continúa hasta el día de hoy. 

Se siguieron conectando ordenadores rápidamente a la ARPANET durante los años siguientes y el trabajo continuó para completar un protocolo host a host funcionalmente completo, así como software adicional de red. En Diciembre de 1970, el Network Working Group (NWG) liderado por S.Crocker acabó el protocolo host a host inicial para ARPANET, llamado Network Control Protocol (NCP, protocolo de control de red). Cuando en los nodos de ARPANET se completó la implementación del NCP durante el periodo 1971-72, los usuarios de la red pudieron finalmente comenzar a desarrollar aplicaciones. 

En Octubre de 1972, Kahn organizó una gran y muy exitosa demostración de ARPANET en la International Computer Communication Conference . Esta fue la primera demostración pública de la nueva tecnología de red. Fue también en 1972 cuando se introdujo la primera aplicación “estrella”: el correo electrónico. 
En Marzo, Ray Tomlinson, de BBN, escribió el software básico de envío-recepción de mensajes de correo electrónico, impulsado por la necesidad que tenían los desarrolladores de ARPANET de un mecanismo sencillo de coordinación.

En Julio, Roberts expandió su valor añadido escribiendo el primer programa de utilidad de correo electrónico para relacionar, leer selectivamente, almacenar, reenviar y responder a mensajes. Desde entonces, la aplicación de correo electrónico se convirtió en la mayor de la red durante más de una década. Fue precursora del tipo de actividad que observamos hoy día en la World Wide Web , es decir, del enorme crecimiento de todas las formas de tráfico persona a persona. 

Conceptos iniciales sobre Internetting  

La ARPANET original evolucionó hacia Internet. Internet se basó en la idea de que habría múltiples redes independientes, de diseño casi arbitrario, empezando por ARPANET como la red pionera de conmutación de paquetes, pero que pronto incluiría redes de paquetes por satélite, redes de paquetes por radio y otros tipos de red. Internet como ahora la conocemos encierra una idea técnica clave, la de arquitectura abierta de trabajo en red.

Bajo este enfoque, la elección de cualquier tecnología de red individual no respondería a una arquitectura específica de red sino que podría ser seleccionada libremente por un proveedor e interactuar con las otras redes a través del metanivel de la arquitectura de Internetworking (trabajo entre redes). Hasta ese momento, había un sólo método para “federar” redes.

Era el tradicional método de conmutación de circuitos, por el cual las redes se interconectaban a nivel de circuito pasándose bits individuales síncronamente a lo largo de una porción de circuito que unía un par de sedes finales. Cabe recordar que Kleinrock había mostrado en 1961 que la conmutación de paquetes era el método de conmutación más eficiente.

Juntamente con la conmutación de paquetes, las interconexiones de propósito especial entre redes constituían otra posibilidad. Y aunque había otros métodos limitados de interconexión de redes distintas, éstos requerían que una de ellas fuera usada como componente de la otra en lugar de actuar simplemente como un extremo de la comunicación para ofrecer servicio end-to-end (extremo a extremo). 

En una red de arquitectura abierta, las redes individuales pueden ser diseñadas y desarrolladas separadamente y cada una puede tener su propia y única interfaz, que puede ofrecer a los usuarios y/u otros proveedores, incluyendo otros proveedores de Internet. Cada red puede ser diseñada de acuerdo con su entorno específico y los requerimientos de los usuarios de aquella red.

No existen generalmente restricciones en los tipos de red que pueden ser incorporadas ni tampoco en su ámbito geográfico, aunque ciertas consideraciones pragmáticas determinan qué posibilidades tienen sentido. La idea de arquitectura de red abierta fue introducida primeramente por Kahn un poco antes de su llegada a la DARPA en 1972. Este trabajo fue originalmente parte de su programa de paquetería por radio, pero más tarde se convirtió por derecho propio en un programa separado.

Entonces, el programa fue llamado Internetting . La clave para realizar el trabajo del sistema de paquetería por radio fue un protocolo extremo a extremo seguro que pudiera mantener la comunicación efectiva frente a los cortes e interferencias de radio y que pudiera manejar las pérdidas intermitentes como las causadas por el paso a través de un túnel o el bloqueo a nivel local. Kahn pensó primero en desarrollar un protocolo local sólo para la red de paquetería por radio porque ello le hubiera evitado tratar con la multitud de sistemas operativos distintos y continuar usando NCP. 

Sin embargo, NCP no tenía capacidad para direccionar redes y máquinas más allá de un destino IMP en ARPANET y de esta manera se requerían ciertos cambios en el NCP. La premisa era que ARPANET no podía ser cambiado en este aspecto. El NCP se basaba en ARPANET para proporcionar seguridad extremo a extremo. Si alguno de los paquetes se perdía, el protocolo y presumiblemente cualquier aplicación soportada sufriría una grave interrupción. En este modelo, el NCP no tenía control de errores en el host porque ARPANET había de ser la única red existente y era tan fiable que no requería ningún control de errores en la parte de los host s. 

Así, Kahn decidió desarrollar una nueva versión del protocolo que pudiera satisfacer las necesidades de un entorno de red de arquitectura abierta. El protocolo podría eventualmente ser denominado “Transmisson-Control Protocol/Internet Protocol” (TCP/IP, protocolo de control de transmisión /protocolo de Internet). Así como el NCP tendía a actuar como un driver (manejador) de dispositivo, el nuevo protocolo sería más bien un protocolo de comunicaciones. 

Ideas a prueba

(servidor LAN)

DARPA formalizó tres contratos con Stanford (Cerf), BBN (Ray Tomlinson) y UCLA (Peter Kirstein) para implementar TCP/IP (en el documento original de Cerf y Kahn se llamaba simplemente TCP pero contenía ambos componentes). El equipo de Stanford, dirigido por Cerf, produjo las especificaciones detalladas y al cabo de un año hubo tres implementaciones independientes de TCP que podían interoperar. 

Este fue el principio de un largo periodo de experimentación y desarrollo para evolucionar y madurar el concepto y tecnología de Internet. Partiendo de las tres primeras redes ARPANET, radio y satélite y de sus comunidades de investigación iniciales, el entorno experimental creció hasta incorporar esencialmente cualquier forma de red y una amplia comunidad de investigación y desarrollo [REK78]. Cada expansión afrontó nuevos desafíos. 

Las primeras implementaciones de TCP se hicieron para grandes sistemas en tiempo compartido como Tenex y TOPS 20. Cuando aparecieron los ordenadores de sobremesa ( desktop ), TCP era demasiado grande y complejo como para funcionar en ordenadores personales. David Clark y su equipo de investigación del MIT empezaron a buscar la implementación de TCP más sencilla y compacta posible.

La desarrollaron, primero para el Alto de Xerox (la primera estación de trabajo personal desarrollada en el PARC de Xerox), y luego para el PC de IBM. Esta implementación operaba con otras de TCP, pero estaba adaptada al conjunto de aplicaciones y a las prestaciones de un ordenador personal, y demostraba que las estaciones de trabajo, al igual que los grandes sistemas, podían ser parte de Internet.

En los años 80, el desarrollo de LAN, PC y estaciones de trabajo permitió que la naciente Internet floreciera. La tecnología Ethernet, desarrollada por Bob Metcalfe en el PARC de Xerox en 1973, es la dominante en Internet, y los PCs y las estaciones de trabajo los modelos de ordenador dominantes. El cambio que supone pasar de una pocas redes con un modesto número de hosts (el modelo original de ARPANET) a tener muchas redes dio lugar a nuevos conceptos y a cambios en la tecnología.

En primer lugar, hubo que definir tres clases de redes (A, B y C) para acomodar todas las existentes. La clase A representa a las redes grandes, a escala nacional (pocas redes con muchos ordenadores); la clase B representa redes regionales; por último, la clase C representa redes de área local (muchas redes con relativamente pocos ordenadores). 

Como resultado del crecimiento de Internet, se produjo un cambio de gran importancia para la red y su gestión. Para facilitar el uso de Internet por sus usuarios se asignaron nombres a los host s de forma que resultara innecesario recordar sus direcciones numéricas. Originalmente había un número muy limitado de máquinas, por lo que bastaba con una simple tabla con todos los ordenadores y sus direcciones asociadas. 

El cambio hacia un gran número de redes gestionadas independientemente (por ejemplo, las LAN) significó que no resultara ya fiable tener una pequeña tabla con todos los host s. Esto llevó a la invención del DNS ( Domain Name System , sistema de nombres de dominio) por Paul Mockapetris de USC/ISI. El DNS permitía un mecanismo escalable y distribuido para resolver jerárquicamente los nombres de los host s (por ejemplo, http://www.acm.org o http://www.ati.es ) en direcciones de Internet. 

El incremento del tamaño de Internet resultó también un desafío para los routers . Originalmente había un sencillo algoritmo de enrutamiento que estaba implementado uniformemente en todos los routers de Internet. A medida que el número de redes en Internet se multiplicaba, el diseño inicial no era ya capaz de expandirse, por lo que fue sustituido por un modelo jerárquico de enrutamiento con un protocolo IGP ( Interior Gateway Protocol , protocolo interno de pasarela) usado dentro de cada región de Internet y un protocolo EGP ( Exterior Gateway Protocol , protocolo externo de pasarela) usado para mantener unidas las regiones.

El diseño permitía que distintas regiones utilizaran IGP distintos, por lo que los requisitos de coste, velocidad de configuración, robustez y escalabilidad, podían ajustarse a cada situación. Los algoritmos de enrutamiento no eran los únicos en poner en dificultades la capacidad de los routers , también lo hacía el tamaño de la tablas de direccionamiento. Se presentaron nuevas aproximaciones a la agregación de direcciones (en particular CIDR, Classless Interdomain Routing , enrutamiento entre dominios sin clase) para controlar el tamaño de las tablas de enrutamiento. 

A medida que evolucionaba Internet, la propagación de los cambios en el software, especialmente el de los host s, se fue convirtiendo en uno de sus mayores desafíos. DARPA financió a la Universidad de California en Berkeley en una investigación sobre modificaciones en el sistema operativo Unix, incorporando el TCP/IP desarrollado en BBN. Aunque posteriormente Berkeley modificó esta implementación del BBN para que operara de forma más eficiente con el sistema y el kernel de Unix, la incorporación de TCP/IP en el sistema Unix BSD demostró ser un elemento crítico en la difusión de los protocolos entre la comunidad investigadora.

BSD empezó a ser utilizado en sus operaciones diarias por buena parte de la comunidad investigadora en temas relacionados con informática. Visto en perspectiva, la estrategia de incorporar los protocolos de Internet en un sistema operativo utilizado por la comunidad investigadora fue uno de los elementos clave en la exitosa y amplia aceptación de Internet. 

Uno de los desafíos más interesantes fue la transición del protocolo para host s de ARPANET desde NCP a TCP/IP el 1 de enero de 1983. Se trataba de una ocasión muy importante que exigía que todos los host s se convirtieran simultáneamente o que permanecieran comunicados mediante mecanismos desarrollados para la ocasión.

La transición fue cuidadosamente planificada dentro de la comunidad con varios años de antelación a la fecha, pero fue sorprendentemente sobre ruedas (a pesar de dar la lugar a la distribución de insignias con la inscripción “Yo sobreviví a la transición a TCP/IP”). 

TCP/IP había sido adoptado como un estándar por el ejército norteamericano tres años antes, en 1980. Esto permitió al ejército empezar a compartir la tecnología DARPA basada en Internet y llevó a la separación final entre las comunidades militares y no militares. En 1983 ARPANET estaba siendo usada por un número significativo de organizaciones operativas y de investigación y desarrollo en el área de la defensa. La transición desde NCP a TCP/IP en ARPANET permitió la división en una MILNET para dar soporte a requisitos operativos y una ARPANET para las necesidades de investigación. 

Así, en 1985, Internet estaba firmemente establecida como una tecnología que ayudaba a una amplia comunidad de investigadores y desarrolladores, y empezaba a ser empleada por otros grupos en sus comunicaciones diarias entre ordenadores. El correo electrónico se empleaba ampliamente entre varias comunidades, a menudo entre distintos sistemas. La interconexión entre los diversos sistemas de correo demostraba la utilidad de las comunicaciones electrónicas entre personas.

La transición hacia una infraestructura global

Al mismo tiempo que la tecnología Internet estaba siendo validada experimentalmente y usada ampliamente entre un grupo de investigadores de informática se estaban desarrollando otras redes y tecnologías. La utilidad de las redes de ordenadores (especialmente el correo electrónico utilizado por los contratistas de DARPA y el Departamento de Defensa en ARPANET) siguió siendo evidente para otras comunidades y disciplinas de forma que a mediados de los años 70 las redes de ordenadores comenzaron a difundirse allá donde se podía encontrar financiación para las mismas.

El Departamento norteamericano de Energía (DoE, Deparment of Energy ) estableció MFENet para sus investigadores que trabajaban sobre energía de fusión, mientras que los físicos de altas energías fueron los encargados de construir HEPNet. Los físicos de la NASA continuaron con SPAN y Rick Adrion, David Farber y Larry Landweber fundaron CSNET para la comunidad informática académica y de la industria con la financiación inicial de la NFS ( National Science Foundation , Fundación Nacional de la Ciencia) de Estados Unidos.

La libre diseminación del sistema operativo Unix de ATT dio lugar a USENET, basada en los protocolos de comunicación UUCP de Unix, y en 1981 Greydon Freeman e Ira Fuchs diseñaron BITNET, que unía los ordenadores centrales del mundo académico siguiendo el paradigma de correo electrónico como “postales”. Con la excepción de BITNET y USENET, todas las primeras redes (como ARPANET) se construyeron para un propósito determinado.

Es decir, estaban dedicadas (y restringidas) a comunidades cerradas de estudiosos; de ahí las escasas presiones por hacer estas redes compatibles y, en consecuencia, el hecho de que durante mucho tiempo no lo fueran. Además, estaban empezando a proponerse tecnologías alternativas en el sector comercial, como XNS de Xerox, DECNet, y la SNA de IBM (8).

Sólo restaba que los programas ingleses JANET (1984) y norteamericano NSFNET (1985) anunciaran explícitamente que su propósito era servir a toda la comunidad de la enseñanza superior sin importar su disciplina. De hecho, una de las condiciones para que una universidad norteamericana recibiera financiación de la NSF para conectarse a Internet era que “la conexión estuviera disponible para todos los usuarios cualificados del campus”. 

En 1985 Dennins Jenning acudió desde Irlanda para pasar un año en NFS dirigiendo el programa NSFNET. Trabajó con el resto de la comunidad para ayudar a la NSF a tomar una decisión crítica: si TCP/IP debería ser obligatorio en el programa NSFNET. Cuando Steve Wolff llegó al programa NFSNET en 1986 reconoció la necesidad de una infraestructura de red amplia que pudiera ser de ayuda a la comunidad investigadora y a la académica en general, junto a la necesidad de desarrollar una estrategia para establecer esta infraestructura sobre bases independientes de la financiación pública directa. Se adoptaron varias políticas y estrategias para alcanzar estos fines. 

La NSF optó también por mantener la infraestructura organizativa de Internet existente (DARPA) dispuesta jerárquicamente bajo el IAB ( Internet Activities Board , Comité de Actividades de Internet). La declaración pública de esta decisión firmada por todos sus autores (por los grupos de Arquitectura e Ingeniería de la IAB, y por el NTAG de la NSF) apareció como la RFC 985 (“Requisitos para pasarelas de Internet”) que formalmente aseguraba la interoperatividad entre las partes de Internet dependientes de DARPA y de NSF. 

El backbone había hecho la transición desde una red construida con routers de la comunidad investigadora (los routers Fuzzball de David Mills) a equipos comerciales. En su vida de ocho años y medio, el backbone había crecido desde seis nodos con enlaces de 56Kb a 21 nodos con enlaces múltiples de 45Mb.Había visto crecer Internet hasta alcanzar más de 50.000 redes en los cinco continentes y en el espacio exterior, con aproximadamente 29.000 redes en los Estados Unidos. 

El efecto del ecumenismo del programa NSFNET y su financiación (200 millones de dólares entre 1986 y 1995) y de la calidad de los protocolos fue tal que en 1990, cuando la propia ARPANET se disolvió, TCP/IP había sustituido o marginado a la mayor parte de los restantes protocolos de grandes redes de ordenadores e IP estaba en camino de convertirse en el servicio portador de la llamada Infraestructura Global de Información. 

El papel de la documentación

Un aspecto clave del rápido crecimiento de Internet ha sido el acceso libre y abierto a los documentos básicos, especialmente a las especificaciones de los protocolos.

Los comienzos de Arpanet y de Internet en la comunidad de investigación universitaria estimularon la tradición académica de la publicación abierta de ideas y resultados. Sin embargo, el ciclo normal de la publicación académica tradicional era demasiado formal y lento para el intercambio dinámico de ideas, esencial para crear redes. 

En 1969 S.Crocker, entonces en UCLA, dio un paso clave al establecer la serie de notas RFC ( Request For Comments , petición de comentarios). Estos memorándums pretendieron ser una vía informal y de distribución rápida para compartir ideas con otros investigadores en redes. Al principio, las RFC fueron impresas en papel y distribuidas vía correo “lento”. Pero cuando el FTP ( File Transfer Protocol , protocolo de transferencia de ficheros) empezó a usarse, las RFC se convirtieron en ficheros difundidos online a los que se accedía vía FTP.

Hoy en día, desde luego, están disponibles en el World Wide Web en decenas de emplazamientos en todo el mundo. SRI, en su papel como Centro de Información en la Red, mantenía los directorios online . Jon Postel actuaba como editor de RFC y como gestor de la administración centralizada de la asignación de los números de protocolo requeridos, tareas en las que continúa hoy en día. 

El efecto de las RFC era crear un bucle positivo de realimentación, con ideas o propuestas presentadas a base de que una RFC impulsara otra RFC con ideas adicionales y así sucesivamente. Una vez se hubiera obtenido un consenso se prepararía un documento de especificación. Tal especificación seria entonces usada como la base para las implementaciones por parte de los equipos de investigación. 

Con el paso del tiempo, las RFC se han enfocado a estándares de protocolo –las especificaciones oficiales- aunque hay todavía RFC informativas que describen enfoques alternativos o proporcionan información de soporte en temas de protocolos e ingeniería. Las RFC son vistas ahora como los documentos de registro dentro de la comunidad de estándares y de ingeniería en Internet. 

El acceso abierto a las RFC –libre si se dispone de cualquier clase de conexión a Internet- promueve el crecimiento de Internet porque permite que las especificaciones sean usadas a modo de ejemplo en las aulas universitarias o por emprendedores al desarrollar nuevos sistemas. 

El e-mail o correo electrónico ha supuesto un factor determinante en todas las áreas de Internet, lo que es particularmente cierto en el desarrollo de las especificaciones de protocolos, estándares técnicos e ingeniería en Internet. Las primitivas RFC a menudo presentaban al resto de la comunidad un conjunto de ideas desarrolladas por investigadores de un solo lugar. Después de empezar a usarse el correo electrónico, el modelo de autoría cambió: las RFC pasaron a ser presentadas por coautores con visiones en común, independientemente de su localización. 

Las listas de correo especializadas ha sido usadas ampliamente en el desarrollo de la especificación de protocolos, y continúan siendo una herramienta importante. El IETF tiene ahora más de 75 grupos de trabajo, cada uno dedicado a un aspecto distinto de la ingeniería en Internet. Cada uno de estos grupos de trabajo dispone de una lista de correo para discutir uno o más borradores bajo desarrollo. Cuando se alcanza el consenso en el documento, éste puede ser distribuido como una RFC. 

Debido a que la rápida expansión actual de Internet se alimenta por el aprovechamiento de su capacidad de promover la compartición de información, deberíamos entender que el primer papel en esta tarea consistió en compartir la información acerca de su propio diseño y operación a través de los documentos RFC. Este método único de producir nuevas capacidades en la red continuará siendo crítico para la futura evolución de Internet. 

El futuro: Internet 2

¿Que es Internet 2?

Es una red de cómputo sustentada en tecnologías de vanguardia que permiten una alta velocidad en la transmisión de contenidos y que funciona independientemente de la Internet comercial actual.

Su origen se basa en el espíritu de colaboración entre las universidades del mundo y su objetivo principal es desarrollar la próxima generación de aplicaciones telemáticas para facilitar las misiones de investigación y educación de las universidades, además de ayudar en la formación de personal capacitado en el uso y manejo de redes avanzadas de cómputo.

¿A qué se refiere con aplicaciones telemáticas?

Son aplicaciones que utilizan las facilidades de telecomunicaciones e informática. Internet es una red Telemática.

¿Qué son las redes de avanzadas? ¿Es sinónimo de redes de banda ancha o de alto rendimiento?

Son redes que junto con la posibilidad de manejar mayores velocidades de transmisión, cuentan con otros atributos, como son:

• Multicast
• Calidad de Servicio (QoS)
• Protocolos especializados (Vgr. H.323)
• IPv6
• Topologías dedicadas, seguras y flexibles

¿Por qué otra Internet?

 

La Internet de hoy en día ya no es una red académica, como en sus comienzos, sino que se ha convertido en una red que involucra, en gran parte, intereses comerciales y particulares. Esto la hace inapropiada para la experimentación y el estudio de nuevas herramientas en gran escala.

Adicionalmente, los proveedores de servicios sobre Internet “sobrevenden” el ancho de banda que disponen, haciendo imposible garantizar un servicio mínimo en horas pico de uso de la red. Esto es crítico cuando se piensa en aplicaciones propias de Internet 2, que requieren calidad de servicio garantizada.

Por otro lado, los enlaces de alta velocidad son aún demasiado costosos para poder realizar su comercialización masiva.

Todo esto, nos lleva a la conclusión que Internet no es un medio apto para dar el salto tecnológico que se necesita para compartir grandes volúmenes de información, videos, transmisión de conferencias en tiempo real o garantizar comunicación sincrónica permanente.

Autores: Edgar Velasquez y Jhon Alexander Asprilla  

               CENSA (Centro de Sistemas de Antioquia)

               © 2010